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1. INTRODUCTION

As usual, let C[ -1, 1J be the space of all continuous, real-valued
functions on [-1, 1J with the supremum norm, IIn the subspace of an
polynomials of degree less than or equal to n, and i?P" the set of all linear
projections P: C[ -1, 1] ~ IIn. If EnU] denotes the distance fromfto its
proximum in IIn , then the Lebesgue inequality states that

lif- Pfll 00 ~ (1 + IIPil) EnU].

It is therefore sensible to find projections whose norms are small.
If (Pn)n€ N is a sequence of projections in ~, the hitherto best known

asymptotic equality (cr. [3]) is

which, for example, holds for the Chebyshev partial sum operators, Sn,
defined by the equalities

n

Sn[f] := I' akU] Tko
k=O

2 InakU] = - f(cos t) cos kt dt,
n 0

Tk(x) = cos(k arccos x).

Here L:' indicates that the first summand should be halved.
Based on a numerical investigation of certain operators, Lewanowicz

[1] conjectured that it is possible to reduce the constant coefficient of In n.
That this is impossible with Lewanowicz operators will be shown in
Section 3 of this paper. In Section 4 it will also be shown that there are
sequences of projections whose elements require relatively few function
values and whose norms have coefficients of In n arbitrarily close to the
value 4/n 2

.
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Since the norms of the Lewanowicz operators are smaller than those of
the Chebyshev partial sum operators when n is small, these operators
ought to be of some practical value. By modifying the Lewanowicz
operators slightly, in Section 5 it will be indicated that many of the hitherto
smallest norms can be reduced.

2. THE LEWANOWICZ OPERATORS AND LEBESGUE FUNCTIONS

In [1] Lewanowicz introduced the operators,
n

I~m)[fJ = 2:' a~m)[!J T k ;

k=O

where

2 m+1

a~m)[!J=-+1 L !(tm+1,j) Tk(tm+1.;),
m ;=1

2j-l
8; = 8m + 1,; = 2m + 2 n.

m~n,

In order to estimate the norms of the projections,
m

Pn[fJ = L !(x",j) Pn,j;
;=1

the Lebesgue functions
m

A Pn = L IPn.;!,
j~1

are used, for which the well-known equality,

IIPnl1 = IIAp.!lao'

holds. (Lewanowicz assumed that, when P" = I~[3"/2J), then liPnil = ApJ1)
( ~ (2/.J3n) In n < (4/n2 )In n), which shall be disproved in the following
section.)

As in [1 J, the following equality holds for Lewanowicz operators,

1 m+1

AI~m)(COS t)=--l L IDn(8j -t) +Dn(l1j + t)1,
m+ ;=1

where
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3. A LOWER BOUND FOR THE NORMS
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THEOREM 1. There is a constant C such that, for every nand m with
m~n,

Proof Using the inequality,

f: IDAO+ t)1 sin t dt~ L" \sin (n+D (0+ t)1 dt<n,

for every 0 E [0, n], it follows that

1 f1
III~) II ~2 -1 AI~)(X) dx

1 1t m+1

= f L: IDn(fJj-t)+DAfJj+t)!sintdt
2(m + 1) 0 j= 1

1 m+1 f1t
~ ) L: (IDn(fJj - t)I-IDn(fJj + t)l) sin t dt

2(m+l j=l 0

1 [(m + 1)/2] f1t n
>--1 L: ID n(Oj-t)\sintdt--

2
·

m + j= 1 0

Furthermore, for every fJ E [nj(2n + 1), nI2],

f: IDn(fJ - t)1 sin t dt

= ~ [~B Isin ( n +Dt esc ~ tIsin(fJ + t) dt

~ ~ J: BIsin ( n +Dt esc ~ tI(sin 0 + 2 cos ( fJ + i) sin i) de

~ sin fJ J: Isin ( n +Dt esc ~ t Idt - 2fJ

[(2n+1)B/21t] vn f21t/(2n+1 l I ( 1) I
~ sin fJ L: esc-- sin n +- t I' dt - n

v~l 2n+lo 2

4 fB/2
~-sinO cscxdx-n

n 1t/(2n + 1)

4 . 24
~-Slll fJ In n----n,

n en.J'3
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where the last inequality results from an elementary computation. It there­
fore follows that there is a constant C1, which is independent of both nand
m, for which the following inequality holds:

Analogously, the same statement can also be proved for the other
operators introduced by Lewanowicz in [1].

4. ASYMPTOTIC BEHAVIOUR OF CERTAIN NORM SEQUENCES

THEOREM 2. Let IX and {J be relatively prime natural numbers with IX> {J,
and let m:=mn :=(IX/{J)n+Yn and Yn=O(l). Then

n n 4
III~m)1I = - csc - ·-In n + 0(1).

2IX 2IX n2

Proof Instead of the complicated Lebesgue function, consider the
symmetric nl(m + 1)-periodic function

so that, for every BE (0, n12) one has

and hence also

III~m) II = max tfin,m(t) + 0(1) = max tfin,m(t) + 0(1).
e"; t";rr-e 0.,; t";rr/(2m+2)

Moreover the summands corresponding to j = 1 and j =m + 1 can be
dropped without affecting the asymptotic behaviour, so that

III~m)1I = max ,]/n,m(t) + 0(1),
0.,; t"; rr/(2m + 2)

where
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In contrast to ljJ n, m' the function \{J n, m has the advantage that every term
of the form csc(Oj± t) is asymptotically OU-ln).

In the sequel, \{J n, m shall be considered as a function defined on
[0, nj(2m + 2)]. The indices of the OJ will now be partitioned into equiv­
alence classes modulo ct, so that

2j-l
0;= 2m+2 n; j = Vct + p,; P, = 1, 2, ,.., ex; v = 1, 2, ..., riJ.

(The missing or additional summands, whose number is bounded by
ct + 1Yn I, do not affect the asymptotic behaviour.) Since

( 1) 1 f3 1n+- --=-+O(n- ),
2 2m+2 2ex

it follows that

and hence

Moreover,

[nl{J] 11m + 1 1 2m + 2
L csc20~v+I'=- L csc-

2
0;+O(n)=--lnn+O(n),

v = J ct J= J an

whence

where

S(z) = :t~ {ISin ((2P, + 1) ~:+z)1 + ISin ((2P, + 1) ~: -z)!}.
Since f3 and ex are relatively prime, the sequence Jif3 (mod ct) runs through
all the natural numbers from 0 to ct - 1, so that (2Ji + 1) f3 (mod 2ot) takes

640/58/1-8



112 KNUT PETRAS

each value of P+ 2v (mod 2IX) exactly once. If IX is even (resp. odd), then
P is odd (resp. even), and (2/1 + 1) P (mod 2IX) runs through all the odd
(resp. even) numbers between 0 and 2IX -1, so that

if IX is even;

otherwise.

In particular, S is a symmetric, (n/IX)-periodic function. The signs of the
sine terms can now easily be found whenever Z E [0, n/2IX], whence Scan
be given explicitly by

() {
2 csc(n/2IX) cos z,

S z =
2 csc(n/2IX) cos(n/2IX - z),

whenever IX is even;

otherwise.
Q.E.D.

Again, the same statement remains true for the other class of operators
introduced in [1]. For applications, these results imply that one can
choose m: =[(1001/1000) n] instead of perhaps [(1001/2) n], thereby
drastically reducing the number of function values without necessarily
obtaining significantly worse results.

5. A MODIFICATION OF THE OPERATORS I~m)

If one considers the graphs of some of the Lebesgue functions of I~mJ, for
small nand m, one observes that the maxima occur on the boundary of the
basic interval. As has already been proved useful for interpolation
operators (cf. [2]), by linearly stretching using the transformation Km

below, the boundary maxima can be pushed outside the basic interval. One
defines

where Km[fJ(x) =fUm+ 1, 1 ·X).

Since Km and its inverse function transform polynomials into polynomials
of the same degree, it is clear that nm) is indeed a projection onto IIn ,

having norms

IInm)II = max A/lml(X):( III~m)lI.
Ixl::::;; lm+l. 1 n

As above, this stretching does not affect the asymptotic behaviour of the
norms.
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TABLE I

n m In in n m in In

1 1 1.000 1.333 21 59 2.261 2.297
2 2 1.250 1.494 22 62 2.279 2.317
3 3 1.430 1.601 23 65 2.296 2.336
4 4 1.570 1.681 24 68 2.312 2.355
5 5 1.685 1.745 25 71 2.328 2.373
6 6 1.783 1.798 26 74 2.342 2.389
7 9 1.854 1.843 27 77 2.356 2.406
8 20 1.905 1.893 28 80 2.370 2.422
9 11 1.947 1.939 29 83 2.382 2.437

10 25 1.984 1.984 30 86 2.393 2.452
11 26 2.019 2.022 31 89 2.406 2.466
12 30 2.053 2.059 32 92 2.418 2.480
13 34 2.084 2.092 33 95 2.431 2.494
14 33 2.107 2.124 34 98 2.444 2.506
15 41 2136 2.153 35 101 2.455 2.520
16 44 2.159 2.181 36 103 2.466 2531
17 40 2.178 2.206 37 106 2.475 2.544
18 45 2.206 2.231 38 109 2.485 2.555
19 52 2.225 2.254 39 112 2.496 2.567
20 47 2.241 2.276 40 115 2.505 2.578

In Table I, the values

in := min III~m)11
n~m~ lOO+n

have been computed numerically, where the corresponding values of m and
the smallest Lewanowicz norms, In, have also been listed.
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